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General formulation of the xuv intensity emitted when relativistic electrons cross through any periodic
stratified medium is presented in the framework of electromagnetism in continuous media. Application is made
to the resonant transition radiation emitted in the geometries of both normal and oblique incidence. In the first
case, agreement is found between our calculated results and published values. Intensity emitted by a periodic
multilayer stack used in the Bragg conditions is determined and the practical interest of a such a radiation
source is discussefiS1063-651%99)08007-1

PACS numbdps): 41.60—m

[. INTRODUCTION diation have directions satisfying the Bragg conditions. We
refer to this emission aBragg resonantransition radiation
When a fast charged particle travels through an opticallyBragg RTR.
heterogeneous medium, an electromagnetic radiation is emit- In the hard x-ray range, crystals are used as Bragg diffrac-
ted [1-3]. This emission is a consequence of the readjusttors and it has been theoretically shown that hard x-ray ra-
ment of the field associated with the charged particle when itliation is emitted when a relativistic charged particle im-
moves in a material showing a sudden change, or a gradienginges through a monocrystal in conditions close to the
of polarization. Such a change exists at the interface betweeBragg direction18—24. This phenomenon was designed as
two media and, consequently, x-ray emission, named transparametric x-ray radiatioiPXR). Dialetis [18] has devel-
tion radiation(TR), has been observed when relativistic elec-oped a theoretical model valuable to describe the PXR but no
trons cross a stack of thin foilgl—7]. The emission takes numerical values of intensity have been calculated from his
place in a narrow cone centered on the electron direction anthodel. Independently models have been proposed and used
having angular spread of the ordery® (1— 82)Y2 For in-  for comparison with the PXR experimental resi2§—33.
cident electrons of 10 to 100 MeV, the emission lies in the In this paper, starting from a model which treat the pro-
soft-x-ray energy range. cess in the framework of the classical electromagnetisth
Conditions giving intense transition radiation have beenwe establish the general expression of the radiative energy
researche8—10. Periodic arrangements of interfaces haveemitted by a stratified medium during the crossing by a rela-
been proposed. Indeed, when the distance between the inteivistic electron in any incidence angle. Moreover, we show
faces is such that the waves emitted at different interfacethat our model accounts for both RTR and Bragg RTR. Our
interfere constructively, an enhancement of radiation occurmodel assumes that the incident beam is not perturbed by the
and this is named resonant transition radiati®TR) [11-  presence of the material and the energy lost by the particle is
13]. Coherence of the transition radiation leading to an in-negligible compared with its kinetic energy. These approxi-
tensity enhancement has been observed. In these expennations are usual for fast particles. Because the system under
ments, incident electrons cross perpendicularly stacks of thinonsideration is a stratified medium described in the frame-
foils and only interfaces between low atomic number matework of continuous media, our final expression is not di-
rial and vacuum have been experimented. The period of sudfectly applicable to crystals.
systems cannot be lower than some microns and the fabrica- From the analytical expression that we obtain, a first cal-
tion of this kind of radiator is no easy task. Moreover, irregu-culation is performed in the spectral range of 1 keV for a
larities in the spacing between the foils can rapidly destroyperiodic stack of Be films separated by the vacuum and
the coherence of the emission. crossed perpendicularly by an electron. The calculated inten-
An alternative method has been propoggd-16. In this  sity is compared with the previous published valjad].
method, the radiator is a periodic multilayered structure. PreAgreement is good at the precision of the optical constants in
liminary theoretical study of the radiation emitted by a strati-this energy range. A second calculation is made in the same
fied structure, crossed by an incident particle perpendicularlgpectral range for an artificial periodic multilayer structure
to the layer planes, has been made. It suggests that particulefossed by an electron in the Bragg conditions. The number
phenomena should occur in the vicinity of the Bragg condi-of photons radiated by an actual periodic struct{88] is
tions [15,17). On the other hand, it is well known that xuv compared with the intensity of the synchrotron radiation at
radiation of a chosen wavelength can be reflected in théhe same energy.
Bragg conditions by multilayered arrangements. The princi- The paper is organized as follows. Section Il is devoted to
pal aim of this paper is to show theoretically that xuv tran-establishing general formulas giving the electromagnetic in-
sition radiation can be obtained from periodic multilayer andtensity radiated by a charged particle moving uniformly
geometry in which both relativistic charged particles and rathrough a multilayer stack. In Sec. Il we establish the main
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multilayer target wherek= w/c is the wave number in vacuurl(R, ) is the
time-Fourier transform of the current associated with the
traveling particle and’(R,w) is the polarization vector in-
duced by the traveling charged particle. At the location of the
observator, that is, outside of the matter and of the electron

X v beam,P(r,w) andJ(r,) vanish.

Let us recall that the vectd?(R, w) is related to the elec-
tric field E(R,w) through the dielectric susceptibility

electron trajectory, Z

a . x(R,w) by the relation
P(R,w)= x(R,0)E(R,w) 2
G and the susceptibility is related to the dielectric constant
e(R,w) by
\‘\\T, n oy ER@-1 5
i . X(Riw)=————. 3
i
! The electric Hertz vector obeys the following differential
I oY . .
= o equation(cf. Appendix A):
T~
¢ ) ) A
VII(r,w) +kII(r,w)=—47P(r,w) —i ?J(r,w)
X (4)
. N ) whose solution is given in terms of the outgoing Green func-
r : observation point (location of the detector) . i
of spherical coordinates r, 6, ¢. tion G(r,R,w) of the Helmholtz equatlon by

FIG. 1. Geometry of the problem. i
o . H(r,w):f P(R,w)+ —J(R,w) |G(r,R,0)d®R. (5)
formulas useful for a qualitative discussion of both RTR and w

Bragg RTR. Numerical examples and comparison with syn-

chrotron radiation are given in Sec. IV and conclusion inThe interest of the Hertz vector formulation is to lead
Sec. V. straightforwardly to a method that we call the “mean-field

approximation. In this approach, the following applies.
Il. RADIATED ENERGY (i) At large distance of the material, i.e., in the far-field
approximation, only the component of the Hertz vector asso-

We treat the problem in the framework of the electromag-ciated with the polarization vectd? is important so that the
netism of continuous media within the Gaussian unit systemielevant Hertz vector can be written

c is the celerity of light in vacuum. The optical properties of

the medium at a poinR for the angular frequencw are explikr) —

described by the dielectric constant, or electric permittivity, I(r,w)= fﬂ(kaw) (6)

¢(R,w). In the spectral range of interest, the magnetic per-

meability x of the medium is equal to unity. We consider an yith

electrically charged particle—in practice an electron—of

charge denoted, moving through a periodic medium with — ) 3

the constant velocity. 8 stands fow/c. The geometry and H(k’w):f X(R,0)E(R,w)exp —ik-R)d°R,  (7)

the relevant notations of the problem are given in Fig. 1. The

medium is made up of alterned layers of matea@nd ma- where

terial b. The period of the structure, that is, the sum of the

thickness of the layea and of the thickness of the layby is k=KkF =K(sin 6 coseX+sindsineY +cosdZ). (8)

denoted byd. The particle travels through thgX,Z) plane

along theZ direction, which makes the angle with the ¢ andk are, respectively, the unit vector and the wave vector

plane of the layers. The observation pairttas the spherical in the observation direction.

coordinates’, 6,¢. (i) The electric fieldE(R, w) in the integrand of Eq(7) is
The electricE(r,») and magnetid(r,w) fields can be  approximated by the electric fielly(R,w) radiated by the

obtained from the electric Hertz vectbk(r,») according to  electron moving uniformly in a “mean” medium of spatially

(cf. Appendix A averaged dielectric constasfw) =1+ 4. In these condi-

. tions, II(k, ) is given by
E(r,w)=VXVXII(r,w)—47P(r,w)—i XJ(r,w)

XH(r,0)=—ikVXII(r,o), (1) I_I(k,w)~fX(R,w)Eo(R,w)eXp(—ikR)dSR. (9)



970 J.-M. ANDRE B. PARDO, AND C. BONNELLE PRE 60

The energy radiated in far-field per unit freqlfncy interval e(w)—1
dw and per steradiad() is expressed in terms #1(k,w) as Xo(@)=—7——,
follows (cf. Appendix B: (16)
2 c _ _ (o) =exp—ipal) X Ginrpm).  po.
o da ~ a2 I (ko) Tk 0) = [T (k,0) - 7] P pm
— . Xp(w) is obtained as the Fourier transform of the suscepti-
X[1I(k,w) -]}, (100 ility profile and Ax(w) is the difference of susceptibility
between the materiaisandb; I' is the ratio of the thickness
where= stands for the complex conjugation. of materiala to the periodd.
The expression of the electric fiel,, radiated by an In the directionZ, the material has a finite size corre-

electron traVEling Uniformly thrOUgh the medium of dielec- Sponding toN periods_ This is taken into account by means
tric constante(w), is given in electromagnetic textbooks of the rectangle functior(recf(Z—L/2)/L]=1 for Z be-
[36,37]. One notes thaE, has a radial symmetry along tle  tween—L/2 and+ L/2 and=0 outsidg. Using the relations
axis and its radiaE§(p,w) and IongitudinaIES(p,w) com-  (9), (1), and(14), the Hertz vector in far-field is given by
ponents are, respectively,

2q " H(k,w)=2p I, (k, ) (179
Ef(p,w)=—=—=K(Ap)exg i —Z],
v e(w) v with
11
2q A2 w — +o _ Z—Lyf2
Eg(p,w)z—i — =—=Ky(Ap)exp i—2Z], Hp(k,w)=)(p(w)f dZexdiQpZ]rec
O g(w) v —
. . . 2q + o + o J
wherep= X2+ YZ is the distance to the electron trajectory, x| = f dxf dY—[Ko(azp)]
K; andK, are the first- and zero-order Bessel function, and ve(w) - —e X
K 1 172 X exp( —iay pX)exp—iayY)X
A=—\/[1—,828(w)]=k< +4my| , (129
B (vB)° o [yl
+ ] dX| dYﬁY[Ko(CYzP)]
wherey is the Lorentz parameter: R
X eXF( —i aX'pX)eX[X —i ayY)Y
Y= : . (12b +eo +oo i a2y
\ 1—52 +J7 dXJ7 dY ® Ko(azp)
In the limit case wheres(w) tends toward unity(case of ~
vacuum), A becomes Xexp —iay X)exp —iayY)Z |, (17b
A= L (13) where use is made of the relation
By
_ dKe()
For a periodic material of period, the susceptibility can Ki(d) =~ o
be expanded in Fourier series:
In Eq. (17),
+ o
X(Ro)= X xp(w)expipgxX)expipgz2), (14 w
P Qp=;—k e(w) cosb+pgygy,
where
ay p=ksindcose+pgy,
2
gszCOSa, ay=ksinfsing,
(18
(15) a'Z=A,
_277 .
9z=g St do=d/sina,

and Lo=Ndp.
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After integration(cf. Appendix Q, Eq. (17) becomes

T,(K, ©) = xp(®)

—2iq Lo F{'Q Lo| f{Q Lo}
—expl — | SIN —
cBe(w) 2 P2 P2

| a’xyp;('i‘ aY?

2
X
(aX,p)2+(aY)2+(aZ)2

w

aZ
+ ivi] , (19

where sinx=sinx/x.
From Eq.(10), the radiated energy is

d?l c — _
m:(ZT)Zk4 Ep 2 {l'[p(k,w)~l'[n(k,w)
—[H_E(k,w)-f][ﬂ_n(k,w)-f]}‘- (20)

Generally,L is sufficiently large so that no overlap exists

between terms of different order. Then, by substituting da q?
Il (k,w) from Eg. (19) in Eq. (20), the expression of the
energy for a given ordep and for both normal and oblique

incidences is
<d2I>_k4 i 21 2| i Lol|?
rrr R e M AP
xexf —LoIm(Qp)]
1 ‘2
X
(ax )2+ (ay)?+ (az)?

X (1—sir? 6 cog @)+ (ay)2(1—sir? osirf ¢)

{(ax,p)z

|aZlv)|?
+ SIn? 6—2ay pary Sin? 6sing cose
w
R(—:[a%]v
—2ay, cos# sin 6 cose
Re[ai]v
—2ay cosfsindsing|. (22
w

In the limit case where (w) tends towards unity, Eq21) is
written as follows:

d?l q? _ Lol[?
(dwdﬂ)pz?kzb(p(wﬂzl-é Sln%Qp?ﬂ |F(91‘le)|
(22)

with
- 5c0¢ &l
F(a-w,w)—m A(O,0,0)— 5

[A(0,¢,0)+3(0,0)]?

- 4:82 ’ (233)
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2
A(8,@,0)=? (sin0+ %) -2 sin&%(l—co&p) ,
(23b
2] 2Bcosf—1
2(6,(1)):,82 SI%G—(%) +BT. (230)

11I. NORMAL AND OBLIQUE INCIDENCES
A. Normal incidence

For normal incidence,

T 2
a=z, do=d, 9gx=0, gz:Fa

ax p=Ksiné cose. (29

By introducing in Eqg.(21) the normal incidence conditions
given by Eq.(24) and establishing that(w) tends towards
unity, the intensity reads
. L
sin QpE

2
GLo.81?
(25)

_49 . 2, 2
dodn ¢ < el

with

sind(1— B cosh— B2?)
GL0.p]= 1—B%cos ¢

(26)

Equationg25) and(26) are easily identified with the expres-
sions generally used to describe the resonant transition radia-
tion (RTR) emitted by a periodic systefii4,16. From the
general expressiof21), Cherenkov intensity can also be de-
duced by settingp=0.

It is known that the RTR of wavelengttyp is emitted in
a cone of opening angle denoted Bere, centered on the
electron trajectory. The resonance condition is obtained
when\/p and 2 have values such as the “sinc” function is
maximum, that isQ,= 0. From Eq.(18), we obtain the reso-
nance condition

1 A
Ve(w) cosap=E+pa. (27)

The angled,, is real only for negative values of the integer
From the variation ofG[ 8,3] versusg [Eq. (26)] and the
condition(27), we have verified that the intensity of the RTR
is only significant when the angle between the observation
direction and the trajectory of the incident particle is close to
1/v. Then, for relativistic electrons, the maximum intensity is
in the angle of opening /

The efficiency of RTR as a radiation source can be de-
duced from the spatially integrated energy

do® , o (27, (7. L
d—w—Fk|)(p(w)| L fo dgofo sin pr

x|G[ 8,B8]|?singde. (28)

2
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The variation ofG[ 6, 3] is slow within the angular width of 2d sin ap=|P|>\p. (35)
the function|sind Q,(#)L/2]|%. This behavior is verified all
the better that the number of perioNds large. In this case,

it is usual to perform the following substitution: the quantitiespgy /k and pg; /k are, respectively, equal to

M\, sin 2a;, and M\ ;2 sirf a,. Then the wavelength

_ L1z 2 for which the intensity is maximum is given by
Slﬂ{ng} — E 7T5[Qp] (29
B 2 1/2
Then the integration ovefl becomes simple and Nmax=Np | 14| 1+ m) } (36)
dl - (27)3%g? ) )
Jdo ¢ k|Xp(‘”)| L|G[‘9p]| ' B0 The angleda corresponding to this maximum are given by

where 6, satisfies the resonance conditi¢27). Equation 1 1/2
(29) is generally a convenient approximation. However, let  cosfa=—— B sir? a, 1+ W) }

us underline that the value of is bounded(less than 1%) B By sint ap

and the introduction of the Dirac function is an approxima- (37)
tion. Morever, the dielectric constant has been assumed

equal to unity. Indeed, in the xuv domain, the dielectric con-By combining Eqs(23b) and(33), the azimuthal angleg s
stant is a complex parameter whose imaginary part accountghich maximize the intensity can be determined. Both con-

1+

for the absorption of the radiation by the matter. ditions are verified for two opposite values|¢mad. Then
two directions are expected for maxima of emission; these
B. Oblique incidence direction are located symmetrically on each side of the plane
of incidence.

In the general case of oblique incidence, we are able to In the relativistic case #~1,y>1), the conditiong36)

find another configuration for which an enhanced radiatiorhnd (37) show that enhanced emission occurs in the neigh-
emission occurs. To do so, we search the conditions foBorhood of the Bragg conditions. Indeed

which the intensity becomes maximum. As for the RTR, the
“sinc” term peaks ifQ,=0, i.e., if the resonance condition

1
Ve(w) cosf,=—+p— (31) P
B do
is satisfied. This condition is analogous to E27) with do Omax=2p— 2; (39)
instead ofd. y©sin2a,

1. Limit case: e(w)—1 In this case, the energyl/dw is determined by integrating

In the limit case where () tends toward unity, it is easy spatially Eq.(22). _ _
to obtain from Eqs(22) and(23) the condition leading to a ~ This set of formulas displays the advantage of showing

maximum intensity. The derivative ¢f given by Eq.(233 simply the general characteristics of the emitted radiation in
is this geometry.

dA (,B)ZdA FdA—AdE

3
dF:_KZ+2 el F+ 1” 2. General case

1
N .
In this case, the radiated energy must be determined by
(32 means of Eq(21). No simple analytical formula can be ob-

tained and numerical treatment must be used. Results of a

calculation made for a typical radiator with the true dielectric
B\? constant are presented in the next section. From this, we

A(,w)= —E(B,w)zz(;) (33)  show that the spatial distribution of the radiated intensity is

A sufficient condition fordF=0 is

d?l 9°
— 1 2 21 2
dwdQ_ C k |Xp(w)| LO

more spread in the direction defined by the anglhan it is
With this condition, the radiated energy reaches a maximuni the limit cases — 1. Moreover, at low incident electron
given by energies, the radiated intensity is approximately the same as
in the limit case but the variation of the intensity with the
. Lol|?/ v )2 electron energy is different. It does not increase wjtlas
S'”C{ij (ﬁ) - (34 expected from the formulg34), which is no longer valid,
and a saturation effect occurs fefw)# 1. This saturation
Then, in the oblique incidence case, a maximum in the radistarts when the condition WB)2<4my is satisfied. Then
ated intensity is expected if the conditio(®l) and(33) are  the parameteA, as given by Eq(12), is practically indepen-
simultaneously satisfied. By associating to the glancing angldent of y; it tends to the constant vallde/47x, so that the
denoteda,, the Bragg wavelength , defined by the Bragg electric field radiated by the electrgaf. Eq.(11)] becomes
relation independent ofy, thus of the electron energy.
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photons/ (electron steradian eV)
0.05¢

AIJ L\ + 8 (deg)

0 0.5 1 1.5 2 2.5

FIG. 2. Angular distribution of the RTR vs the angleThe electron energy is 25 MeV. The energy of the photons is 1 keV. The target
consists in a periodic arrangement ojuin-thick 18 Be foils separated by 2m of vacuum.

IV. NUMERICAL APPLICATIONS AND COMPARISON tively. As expected, the radiation is divided into two peaks
BETWEEN THE VARIOUS RADIATION SOURCES corresponding to the two values af,,,,, separated by a

Numerical applications are made for a radiation OfcerI];rellzlidipéll the peak intensity and the spatially integrated
1 keV(A=1.24nm). In all the cases, we calculate the num-, g P y P y d

ber of ph ; o lptensity versus the electron energy are plotted simulta-
photons .radlated per electron, per steradian, in a un|neously fore(w)=1 and for the true value of(w). As
photon energy interval centered about 1 keV. already discussed, saturation appears from 20 MeV for the
true value ofe(w). At the peak intensity, the number of
photons radiated at 25 MeV is>x410 © per electron per
Electrons of 25 MeV {=49) traveling through a peri- steradian per eV.
odic arrangment of Jem-thick 18 Be foils separated by 2
um of vacuum have been previously considerad]. From C. Synchrotron radiation
Eq. (21), we have calculated the angular distribution of the
RTR versus the anglé for such an arrangement. The result
is presented in Fig. 2. The emission occurs in cones center
along the trajectory of the electron with opening angles clos
to (2X 1.2)° for the first order§=1) and to (2< 2)° for the
second order f=2). The third order cancels because the
ratio I' of the foil thicknesg1 um) to the period of the stack
(3 um) is equal tog [cf. the expression of, from Eq.(16)]. 312 e2< E )

A. Resonant transition radiation (RTR)

A general expression for the instantaneous power radiated
«Q:Y an electron of energl at a trajectory point of radiug,

nto all angles, per unit frequency interval centered about the
requencyw, has been derived by Schwing&8]. In terms

of the photon energ¥i w rather than the angular frequency,
this expression reduces to

The number of photons radiated per electron, per eV, per P(hw,t)= o me?
steradian is about 10 2 while the value calculated from P\ MoC

Eq. (1) of Ref.[34] is ~5.6x 10" 2. For this case, the differ- hw\? [ o _ _
ence between the two values is of the order of magnitude of ( o G(hw in C.G.S. units,
the imprecision on the optical constants, which can be esti- € (40
mated to be about 20%. Let us underline that our formulatioy here . is the so-called critical energy and is defined by
is general while the model of Rgf34] is valuable only in the the relation
x-ray range and for small emission angles.
3 hc| E |3
B. Bragg resonant transition radiation (Bragg RTR) ﬁwczﬂ 7 W

from multilayer systems

Calculation is performed for an existing multilayer struc- and the functiorG(y) is given by
ture composed of 35 molybdenum/carbon bilay@5]. The
thicknesses of the Mo and C layers are 1.13 and 2.27 nm,
respectively. The stack is deposited onto a 300-nm-thick sili-
con carbide film. Such thin substrate made up of bwele-
ments enables us to reduce the bremsstrahlung emission. Ahe integrand inG(y) involves Bessel functions of imagi-
the wavelength of 1.24 nm, the Bragg angle is 10.5° for thehary argument.
order|p|=1. We consider a relativistic electron with an en- et us consider an hypothetic machine having its critical
ergy equal to 25 MeV, impinging the multilayer structure atenergy equal to 1 keV. This is obtained with electrons of
the Bragg angle. The angular distribution of the radiationabout 766 MeV maximum energy moving with constant
versus the anglegand¢ is shown in a 3D plot, Fig. @) for  speed along a circular orbif @ m radius. From E¢(40), one
e(w)=1 and Fig. 8b) for the true value ok (w), respec- obtains the number of photons radiated per electron averaged

G(y)=y? fyme( mdn.




974 J.-M. ANDRE B. PARDO, AND C. BONNELLE PRE 60

photons/ (electron steradian eV)

10 —
e (3)
_—’_-
/
10 / (b)
2 mmbmmmepeESiC e e ————— (©)
5 [ i
Q (4
5 £
5 10°
o]
-1 B T T @
5 .
{=4
10°® £
10’7‘.‘..‘..‘:.;1.(.“‘.‘»\\\\..‘
0 10 20 30 40 50 60 70

electron energy (MeV)

(a)
: FIG. 4. Number of photons at the peak and spatially integrated

number of photons vs the electron energy,46w) =1 and for the
photons/ (electron steradian eV) true value ofe (w). Curvea, spatially integrated number of photons
(photons/electron/eMor e(w)=1; curveb, number of photons at
the peakphotons/electron/steradian/gfr ¢(w) =1; curvec, spa-
tially integrated number of photon@hotons/electron/e)for the
true dielectric constant; curve, number of photons at the peak
(photons/electron/steradian/g¥r true dielectric constant. The en-
15 ergy of the photons is 1 keV. The target is the same as for Fig. 3.

Performances of various types of sources are difficult to
#(deg) deduce only from the theoretical values calculated in the pre-
-5 ceding paragraph. Technical and experimental considerations
must be taken into account. Among the technical parameters,
average current, temporal, and spatial structures of the inci-
dent particle beam are predominant. Thus, in comparison
(b) with the synchrotron radiation, insertion devices can increase

FIG. 3. Angular distribution of the Bragg resonant transition the intensity by several orders of magnitude. On the other

radiation vs the angle$ and ¢ in a three-dimensional plot. The hand, the average C_urrent In-a Stora_ge ring can be two to
electron energy is 25 MeV. The energy of the photons is 1 ey three orders of magnitude larger than in an electron accelera-

Calculation is performed for a target consisting in a periodictor: Contrary, the peak current of an electron accelerator is

multilayer structure composed of 35 molybdenum/carbon bilayersorders of magnitude larger than the current associated to one

The thicknesses of the Mo and C layers are 1.13 and 2.27 nnglectron bunch in a storage ring, making the RTR attractive

respectively. The glancing angle of the incident electron is 10.5°for time-resolved measurements in the x-ray field.

which is the Bragg angle for photons of energy equal to 1 keV. Another important factor is the spectral distribution. In
the case of the Bragg RTR, the width of the spectral distri-

on one second and the total energy emitted by the machine EJ'[iOﬂ is narrow, ie., thg radiation_ is_ quasimonochromatic,
determined by taking into account only the number of elec!" contrast with the continuous radiation of the synchrotron
trons present on the orbit at each rotation. Consequently, tHePUrce. This presents an appreciable advantage in experi-
number of photons radiated by an electron in a straight moyMeNts which require a narrow spectral bandwidth. _

ing must be compared with the number of photons radiated It must be underlined that the possibility exists to realize
by an electron during passing through a point of the Orbit;muIUIayer-substrate systems only a few hundred nanometers

this last is 8< 10~“ photons per electron per steradian per eythick. Such a radiator minimiz_es the production' of brems-
about the critical energy. strahlung and the self-absorption and tends to increase the

efficiency of the proposed source. Using an electron beam of
a few tens of MeV with an average current of 1 mA and a
V. CONCLUSION convenient multilayer radiator, a Bragg RTR of*4@hotons
per second per steradian per unit photon energy interval can
We have shown that resonant transition radiation in norbe achieved with a spectral broadening of only 10 eV cen-

mal incidence as well as Bragg RTR from periodic stratifiedtered about 1 keV. Then Bragg RTR offers the possibility to
structures can be described by the same theoretical model flispose relatively compact and simple efficient xuv sources
the framework of the electromagnetism of continuous mediafor scientific and industrial applications.
On the other hand, analogy between Bragg RTR and PXR is
evident. Consequently, the use of multilayer stacks as a ra-
diator with a period in the nanometric scale would make
possible the extension of the parametric radiation in the xuv The electricE and magnetidH fields are related to the
domain. scalar¢ and vectorA potentials by

APPENDIX A
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E(r,t v t GALL.Y) Al
(r)==Va(r)-—-— (A1)
H(r,t)=V XA(r,t). (A2)
From the Maxwell equation
V X H —aD(r't)+4WJ A3
(r!t)_ cot T (rvt)v ( )

whereJ is the electric current density aridl is the electric
displacement vector defined by

D(r,t)=E(r,t)+4=P(r,t). (A4)
One has
JE(r,t) 4miP(r,t) 4m
VXH(r,t)= e + e +TJ(r,t).
(A5)

If one introduces the electric Hertz vectr such that

III(r,t)

A(r,t)= oot

(AB)

and

¢(r,t)=—V_-1I(r,t), (A7)

then by combining Eq9Al), (A2), and Eq.(A5), one finds
that the Hertz vector satisfies the following equation:

LIt PT(rt)  AmdP(r,t) 4w

— + = + —
v cat c3ot? cat c Ir.b).
(A8)

Assuming the fields to be harmonics, one obtains

VZH(r,w)+w2C—12H(r,w)= —47P(r,w)—i %J(r,w).
(A9)
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Now we turn to the expression of the magnetic and electric
fields in terms of the Hertz vector.

Combining Eq.(A2) and Eq.(A6), it is straightforward to
show that in terms of the harmonic field,

i
H(r,w)z—%’VxH(r,w). (A13)
Combining Eq.(A1), Eq. (A6), and Eq.(A7) yields
1 &
E(r,t)=VV-l'[(r,t)—?Pﬂ(r,t). (A14)
In terms of the harmonic field, one obtains
w2
E(r,w)=VV.-II(r, w)-l— > 1(r,w), (A15)
that is,
w?
E(r,w)=V X[V XII(r,w)]+ V2II(r, w)+ S1I(r, o).
(Alo6)

By virtue of Eq.(A9), it comes

E(r,w)=VX[VXII(r,w)]—47P(r,w)—i 4771-\](|’,w).
(A17)

At the location of the observator, that is, outside the matter
and the electron beam, the electric field is simply given by

E(r,w)=VX[VXII(r,0)]. (A18)

APPENDIX B

The energy detected by arddetector(which has a total
surface>) surrounding the radiator during the experiment is
given by

|=%f7:dtf2dsat)xH(t). (B1)

The solution of the above differential equation is obtained by

means of the outgoing Green functidd(r,R,w) of the
Helmholtz equation, which verifies

1
V2G(r,R,w)+ wZ?G(r,R,w)z —478(r-R)
(A10)
by

G(r,R,w)d®R.
(A11)

H(r,w)=f [P(R,w)—l— iE‘J(R,w)

It is well known that the Green functioB(r,R, ) reads

LW
ex;{|—|r—R|)
c

(A12)

Performing a Fourier transform of the electric and magnetic
field gives

f J+°° dw
o 27T

XH(w")expio't).

+odw’

w2

dS E(w)expi wt)
(B2)

The integration over time yields

_CJ“"da)J‘*“d(qua NdS
T4m ) 2w ) . 2m T+ o’)dSHw)

XH(w"). (B3)
The integration ovew’ yields
c
2(2 )Zf dwf dSE(w)XH(—w), (B4)
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that is The integration oveK andY can be carried out by parts and
then the following integrals appear:

c (+=
— do | ddSE(w)XH*(w). (B5)
2m) fo L (. m.b)= f dYJ dX— [K(bx/X2+Y2)]

Consequently, the energy radiated through a elementary sur-

facedS per angular frequency intervdk is given by xexp(—iaX)exp(—inY), (C3
dl c
Jo = W|[E(m)XH*(m)]~dS|. (B6) Iy(a,7,b)= f de dX—5 [Ko(b\/X2+Y2)]
One has xXexp(—iaX)exp( —inY), (C9
E(w)=V XV XII(0) B7)  and
and +o + o0
|Z(a,7;,b):f de dX Ko(byX?+Y?)
H(w)=—ikVXIl(w). (B8) - -
The Hertz vectoll(w) is expressed by the formu(8) in the xXexp(—iaX)exp(—inY). (CS)

main text. In far-field this vector behaves as a plane wave sq.. . I
that one has Qince the above integral is given lgyee below
. 2w
VXI(w)~ikXIl(w). (B9) - ="

|z(04177-b) 2+ 7]2+b21 (C6)

Consequently,
it follows that
E(w)XH*(w)=—KkX[kXII(w)]X —K[kXIT*(w)].

(B10) , : 2m
Ix(a,n,b)=—Ialz(a,n,b)=—la—2+—rb2.
Using the identity aTn cn
AX(BXC)=(A-C)B—(A-B)C (B11) and
it follows that o
E(w)XB* (0)=k4[f- TI(w)][f- TT* ()] Ilamb)==inlzla,nb)=~1n 7=
C8
—(w) -II*(w)}f. (B12) €8
] ] After introduction of these integrals, E(L7) can be rewrit-
Using Eq.(6) yields ten as follows:
dl c k* i i ~2iq
dw (2m )2 2 H[r w)][r (w)] H(k w)= 2 Xp(w)
cBe(w)
—H(w)-H*(w)}f~dS|. (B13)
_Lo|Lo
Finally the energy radiated per angular frequency interval Xexl{"%? o
dw and per steradiad(} is given by
d2| . ({Q LO 277
c Xsing Qp—
To a0~ 22 I (k) Tk, @) = [T (k,0)- ] 2 J(axp)?+ (ay)+ (az)?
— R azv
X[(K,w)-F1}]. (B14) x[ax px+aYv+—z] (C9)
w
APPENDIX C Calculation ofl z(«, 7,b)
The integration ovet is direct and the result is given in  1z(a,7,b) can be rewritten as follows:
terms of the “sincx=sinx/x” function by ) .
Ly [ L Iz<a,n,b>=lz<t,b>:fo d¢fo Ko(bp)
—-sind Qp—-|, (Cy

Xexp —itpcose)pdp (C10
where

with t=/a?+ B2

Lo=Ndj. (C2 Transforming Eq(C10 leads to
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o w wherel is the Bessel functioh of zero order.
Iz(t,b)= fo Ko(bp) jo exdv(p)cosg]dé Taking into account the relation
+J exq—v(p)COS(b]dd)}p dp, (C11) Joliv]=lolv], (C13
0
wherev (p) = —itp. where J, is the Bessel functiord of zero order, and the
From Eq.(3.339 of [39], one has equation(6.521) of [39], it follows that
12(0) =7 | Kolbp)lalu(p)]+ 1ol ()T} pd. 2w 2m
° I2(t,b)= (C14

(C12 b2+12 b2+ al+ 2
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